9 research outputs found

    Universally Near Optimal Online Power Control for Energy Harvesting Nodes

    Full text link
    We consider online power control for an energy harvesting system with random i.i.d. energy arrivals and a finite size battery. We propose a simple online power control policy for this channel that requires minimal information regarding the distribution of the energy arrivals and prove that it is universally near-optimal for all parameter values. In particular, the policy depends on the distribution of the energy arrival process only through its mean and it achieves the optimal long-term average throughput of the channel within both constant additive and multiplicative gaps. Existing heuristics for online power control fail to achieve such universal performance. This result also allows us to approximate the long-term average throughput of the system with a simple formula, which sheds some light on the qualitative behavior of the throughput, namely how it depends on the distribution of the energy arrivals and the size of the battery.Comment: the proposed scheme is shown to be optimal both within constant additive and multiplicative gaps; submitted to Journal on Selected Areas in Communications - Series on Green Communications and Networking (Issue 3); revised following reviewers' comment

    Can Feedback Increase the Capacity of the Energy Harvesting Channel?

    Full text link
    We investigate if feedback can increase the capacity of an energy harvesting communication channel where a transmitter powered by an exogenous energy arrival process and equipped with a finite battery communicates to a receiver over a memoryless channel. For a simple special case where the energy arrival process is deterministic and the channel is a BEC, we explicitly compute the feed-forward and feedback capacities and show that feedback can strictly increase the capacity of this channel. Building on this example, we also show that feedback can increase the capacity when the energy arrivals are i.i.d. known noncausally at the transmitter and the receiver

    Universally Near Optimal Online Power Control for Energy Harvesting Nodes

    No full text

    Online Power Control for Block i.i.d. Energy Harvesting Channels

    No full text

    Capacity of the Energy Harvesting Gaussian MAC

    No full text

    A Communication Channel With Random Battery Recharges

    No full text
    corecore